С.Сейфуллин атындағы Қазақ агротехникалық университетінің **Ғылым жаршысы** (пәнаралық) = **Вестник науки** Казахского агротехнического университета им. С.Сейфуллина (междисциплинарный). - 2020. - №2 (105). - С.162-172

РАСЧЕТ НОРМАТИВОВ БИОЭКОНОМИЧЕСКОЙ ПРОДУКТИВНОСТИ СОСНОВЫХ ДРЕВОСТОЕВ ОСТРОВНЫХ БОРОВ КОСТАНАЙСКОЙ ОБЛАСТИ

Шишкин А.М., старший научный сотрудник Панкратов В.К., младший научный сотрудник ТОО «Казахский научно-исследовательский институт лесного хозяйства и агролесомелиорации», г. Щучинск, Казахстан, ул. Кирова, 58

Аннотация

приводятся результаты НИР расчету нормативных статье ПО показателей биоэкономической продуктивности экологооценки экономического потенциала сосновых древостоев Костанайской области для Іа I класса бонитета, по данным из таблиц хода роста (TXP), взятых из материалов лесоустроительных работ. При определении общей стоимости продуктивности сосновых древостоев биологической чистая стоимость древесного прироста, дополнялась оценками ряда полезных услуг, представляемых лесными насаждениями в числе услуг в условиях нашей фитонцидная, республики реально учитывались пылеулавливающая рекреационная функции, а также услуги побочного пользования. Методы исследований при выполнении работы показаны созданием линейных формул расчётам биоэкологической продуктивности в месячном расчётном показателе (МРП). В результате получены нормативы по экономической оценке для сосновых древостоев островных боров Костанайской области. При помощи рассчитанных нормативов можно получить полную стоимость ресурсов.

Ключевые слова: сосна обыкновенная, сосновые древостои, биоэкологическая продуктивность и оценка, кислород, продуцирующая функция, углерод, депонирующая функция, нормативы.

Введение

B соответствии методологией экологоэкономического учета, предложенной OOH. основную территорий ценность природных составляет поток выгод, получаемых использования природных ресурсов и экосистемных услуг. По оценкам отечественных

зарубежных специалистов, практически для всех ООПТ доля экосистемных услуг (поглощение углерода и водорегулирование и т.д.) составляет более 50% их общей ценности, а для крупных по площади объектов она достигает 90%...

Поскольку для лесных насаждений Казахстана

стоимостной исследования ПО биоэкологического оценке ИΧ потенциала проводятся впервые, особо актуальным становится необходимость учитывать не только их ресурсный потенциал, но и часть средоформирующих функций экосистемных услуг, присущих территории лесов, соответствующего ИМ функционального назначения.

Целью нашей работы служила разработка нормативных показателей экологической продуктивности и оценки эколого-экономического потенциала основных лесообразующих пород, в частности - сосна островных боров Казахстана Костанайской области.

Примененные методы и принципы определения

Материалы и методика исследования

При выполнении работы НИР использовались следующие методы оценки объектов:

- принципы построения совокупности лесных благ в динамике их лесообразовательного процесса (по возрастным периодам);
- формы представления экономических характеристик (показателей, критериев) с учетом их пространственно-временной динамики (по возрастным периодам и классам бонитета);
- способы определения суммарной стоимости участков лесов в зависимости от их экологосоциальной и экономической значимости и правового статуса.

экологической продуктивности и ее экономической оценки исследуемых объектов являются фундаментальной основой разрешения краткосрочных интересов индивидуальных природопользователей максимизации дохода И долгосрочных предпочтений общества в сохранении природноресурсного потенциала территорий [1-3]

В данной статье приводятся нормативы стоимостной оценки биоэкологической продуктивности сосновых древостоев островных боров Костанайской области для Іа и І класса бонитета, которые были привязаны к ставкам месячного расчетного показателя (МРП).

Для составления таблиц биологической продуктивности $(TB\Pi),$ были применены существующие таблицы хода роста (TXP) для исследуемого региона. Запасы ТБП фитомассы В рассчитывались учетом коэффициентов (К), которые были определены использованием c методической разработки, ДЛЯ перевода запасов стволовой древесины систему В весовых показателей фитомассы древесной, представленных работе B.A. Усольцева. Предложенная регрессионной структурная форма переводных модели ДЛЯ фитомассы коэффициентов представлена в виде формулы:

где Pi — фитомасса в абсолютно сухом состоянии, т/га; M — запас стволовой древесины, M^3 /га; A — возраст древостоя, лет; H — средняя высота деревьев, M; D — средний диаметр стволов, M0, M1, M2, M3, M3, M4, M5, M5, M6, M6, M7, M8, M9, M9,

Если вклад возраста и морфометрических показателей полога древостоя достаточно не велик в сравнении с запасом, то последний для обеспечения большей корректности переносится в правую часть уравнения и используется в качестве одного из регрессоров:

$$lnPi = f(lnA, lnH, lnD, lnN, lnM).$$
 (2)

В общем случае уравнения 1 и 2 можно представить в виде формулы и использовать в дальнейших расчетах:

$$Pi/M$$
 или $Pi = f(A, D, H, N, M)$ (3)

Основное преимущество уравнения (3) многофункциональность применения В комплексе исследований по получению данных о фитомассе лесных экосистем, а соответствующие характеристики морфоструктуры (A, D, H, N, M)представлены в ТХР и совмещение с ними моделей фитомассы ПО рекурсивному принципу возможность составления ТБП на базе имеющихся таблиц хода роста [4].

Величина органического углерода и кислорода в древесной массе определялась по данным химического состава древесных растений представленных в работе С. В. Белова [5].

Количество поглощаемой древостоями углекислоты (СО₂) и выделяемого ИМ кислорода (O_2) определяется методу Д.А. ПО Комиссарова [6] с использованием, всей растительности, постоянных коэффициентов: на 1 вещества тонну прироста сухого поглощается 1,83 тонны углекислоты (CO_2) и выделяется 1,40 тонны кислорода (O_2).

При этом оценка связанного углерода и кислорода, исследуемых древесных пород определялась на величину прироста установленного в TXP (для хвойных – 10 лет) [7]. Стоимость углерода составляла примерно 3,0 доллара США или 1152.0 около тенге, согласно действующему курсу НБК 01.01.2019 года (курс одно доллара США - 384 тенге).

Стоимость кислорода учитывали по цене его получения для технических целей — 1000 тенге за 1 тонну.

Биосферная роль леса имеет экономическую значимость, то есть происходит смена приоритетов в системе кадастровой оценки лесных земель. Необходимость стоимостной оценки депонированного лесной растительностью углерода не вызывает сомнения. Но эти оценки в мировой практике не однозначны и варьируют от 2-31 до 80-1700 и даже 3000 долларов США.

Из-за экономического кризиса [8], происходящего в настоящее

время, стоимость углерода значительно снизилась и стала равной около 3 долларов США за тонну или примерно 1000 тенге. Данную стоимость мы учитывали в

расчетах при выполнении НИР, как для углерода, так и для кислорода по цене его получения для технических нужд.

Основные результаты исследований НИР

Биоэкологическая продуктивность сосновых древостоев Костанайской области разработана на основе региональных таблиц хода роста, по пяти классам бонитета. Данная статья отражает Іа и І класс бонитета сосновых древостоев (таблица 1).

Таблица 1 — Данные хода роста сомкнутых сосновых древостоев Костанайской области для Ia и I класса бонитета, (фрагмент таблицы)

Ъ	Средняя	Средний	Число	Сумма	Видовое	Запас						
Возраст,	высота,	диаметр,	стволов,	=	число	стволовой						
лет	M	СМ	шт.	сечения, м2		древесины в коре, м ³						
	Іа класс бонитета											
20												
30	10,6	10	3514	27,6	528	155						
40	15,3	14,9	1927	33,6	492	253						
50	19,5	19,6	1260	38	474	352						
60	23,1	24,2	882	41,6	464	446						
70	26,1	28,6	691	44,4	458	531						
80	26,7	32,9	550	46,8	454	609						
90	30,8	36,9	456	48,8	451	677						
100	32,6	40,9	384	50,5	448	738						
110	34,1	44,7	331	52	447	792						
120	35,4	48,4	290	53,3	445	840						
			I кла	сс бонитета								
20	5,1	4,2	12202	16,9	655	56						
30	9,3	8,7	4239	25,2	544	128						
40	13,5	12,9	2341	30,6	503	208						
50	17,2	17	1529	34,7	482	288						
60	20,4	21	1094	37,9	471	364						
70	23,1	24,8	638	40,5	464	434						
80	25,3	28,5	668	42,6	459	495						
90	27,2	32	553	44,5	456	553						
100	28,8	35,5	465	46	453	601						
110	30,1	38,8	402	47,5	451	646						
120	31,3	42	351	48,6	450	680						

По данным таблиц хода роста сосновых древостоев определяли 10-летний прирост запаса стволовой древесины сомкнутых древостоев для указанных классов бонитета, который рассчитывали по разности древесного запаса последующего и

предыдущего 10-летних возрастных периодов. При получили ЭТОМ прироста показатели ПО запасу древесины в каждом конкретном возрасте, которые в последующем использовали для: определения прироста массы древесного

надземной фитомассы; определения содержания CO_2 и O_2 в надземной фитомассе; суммирование экологических составляющих для получения суммарной биологической продуктивности стволовой древесины и надземной фитомассы в соответствующем

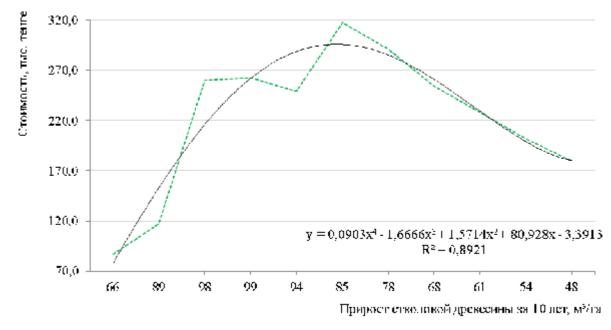
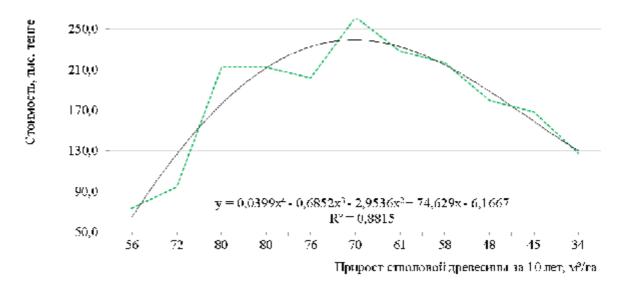

возрасте и классе бонитета. Для этого проводили расчет переводных коэффициентов К1 по методике В.А. Усольцева [9-10], необходимый для перевода запаса стволовой древесины (m^3/ra) в весовое выражение надземной фитомассы (τ/ra) (таблица 2).

Таблица 2 - Переводные коэффициенты (К1) для сомкнутых сосновых древостоев островных боров Костанайской области (фрагмент таблицы)

Возраст,		Іа бонитет		I бонитет			
лет	M,	Ф,	К1	M,	Ф,	К1	
	м ³ /га	т/га		м ³ /га	т/га		
20	66	39,1	0,592	56	33,8	0,604	
30	155	82,1	0,530	128	69,3	0,541	
40	253	127,8	0,505	208	106,8	0,513	
50	352	173,5	0,493	288	144,2	0,501	
60	446	217,6	0,488	364	180,0	0,495	
70	531	257,5	0,485	434	213,2	0,491	
80	609	294,7	0,484	495	242,6	0,490	
90	677	327,4	0,484	553	270,9	0,490	
100	738	357,3	0,484	601	294,6	0,490	
110	792	384,1	0,485	646	317,1	0,491	
120	840	408,2	0,486	680	334,6	0,492	

При помощи переводных коэффициентов определяли общую биоэкологическую продуктивность сосновых древостоев Костанайской области, перемножения ИΧ на стволовой запас древесины за **5**летний прирост, получая при этом величину прироста надземной фитомассы В т/га 10-летний 3a период (таблица 3).


По данным таблицы 3 с учетом МРП на 2019 год были построены графики стоимости древесного прироста (рис. 1) и стволового запаса древесины за 10- летний период, по которым в дальнейшем определялась стоимость функций леса с интервалом в 5 м³ по запасу древесины.

а) I^a класс бонитета

Таблица 3 — Биологическая продуктивность сосновых древостоев островных боров Костанайской области для I^a и I класса бонитета (фрагмент таблицы)

Возраст,	Запас стволовой	Прирост	Текущий прирост	Фито- масса,	Коэффи	Масса прироста		Усвоенный в древесном приросте, т/га		В расчёте на прирост, т/га		
лет	древесины,	q, м ³ /га	по запасу	Φ	циент К1	q,	углерод	кислород	стока СО2	продуц. О2		
	м ³ /га	WI /I C	м³/га	т/га	IXI	т/га	(48,7%)	(41,9%)	1,83	1,40		
	Іа класс бонитета											
20	66	66	3,3	39,1	0,592	39,1	19,0	16,4	71,5	54,7		
30	155	89	8,9	82,1	0,53	47,2	23,0	19,8	86,3	66,0		
40	253	98	9,8	127,8	0,505	49,5	24,1	20,7	90,6	69,3		
50	352	99	9,9	173,5	0,493	48,8	23,8	20,5	89,3	68,3		
60	446	94	9,4	217,6	0,488	45,9	22,3	19,2	83,9	64,2		
70	531	85	8,5	257,5	0,485	41,2	20,1	17,3	75,4	57,7		
80	609	78	7,8	294,7	0,484	37,8	18,4	15,8	69,1	52,9		
90	677	68	6,8	327,4	0,484	32,9	16,0	13,8	60,2	46,1		
100	738	61	6,1	357,3	0,484	29,5	14,4	12,4	54,0	41,3		
110	792	54	5,4	384,1	0,485	26,2	12,8	11,0	47,9	36,7		
120	840	48	4,8	408,2	0,486	23,3	11,4	9,8	42,7	32,7		
					асс бонит							
20	56	56	2,8	33,8	0,604	33,8	16,5	14,2	61,9	47,4		
30	128	72	7,2	69,3	0,541	39,0	19,0	16,3	71,3	54,5		
40	208	80	8,0	106,8	0,513	41,0	20,0	17,2	75,1	57,5		
50	288	80	8,0	144,2	0,501	40,1	19,5	16,8	73,3	56,1		
60	364	76	7,6	180,0	0,495	37,6	18,3	15,8	68,8	52,7		
70	434	70	7,0	213,2	0,491	34,4	16,7	14,4	62,9	48,1		
80	495	61	6,1	242,6	0,490	29,9	14,6	12,5	54,7	41,8		
90	553	58	5,8	270,9	0,490	28,4	13,8	11,9	52,0	39,8		
100	601	48	4,8	294,6	0,490	23,5	11,5	9,9	43,0	32,9		
110	646	45	4,5	317,1	0,491	22,1	10,8	9,3	40,4	30,9		
120	680	34	3,4	334,6	0,492	16,7	8,1	7,0	30,6	23,4		

б) І класс бонитета

продуктивности

Рис. 1 – Графики стоимости древесного прироста сосны обыкновенной за 10-летний период (а) I^a и (б) I класса бонитета

В результате построенных графиков стоимости древесного прироста были рассчитаны нормативы экономического

потенциала

сосновых древостоев островных боров Костанайской области (таблица 4) [11].

Таблица 4 — Расчет нормативов стоимостной оценки островных боров сосновых древостоев Костанайской области (фрагмент таблицы)

Запас,	Надзе	Стоимостная оценка, тенге									
м³/га	мная	органич	неский	количество							
	фитом	углерод	кислород	сток СО□	продуциру	прироста	учтённ	древесн			
	acca,	(C)	(O□)		емого О□	древесной	ых	ой			
	т/га					массы за	видов	массы и			
						10 летний	услуг	учтённо			
						период		ГО			
								комплек			
								са услуг			
				I а боните	Т		1	•			
60	36	7790,9	6632,6	29353,4	22407,7	24763,8	1079,5	31876,3			
65	38	10248,3	8725,1	38603,1	29469,3	26840,3	1168,9	34566,3			
70	41	13172,9	11215,6	49610,7	37873,0	28916,8	1258,3	37256,3			
75	43	16605,4	14138,7	62528,5	47735,1	30993,3	1347,7	39946,3			
80	45	20586,3	17528,9	77508,6	59171,9	33069,8	1437,1	42636,3			
85	48	25156,0	21420,6	94703,4	72299,6	35146,3	1526,5	45326,3			
90	50	30355,1	25848,3	114265,1	87234,4	37222,8	1615,9	48016,3			
95	53	36224,0	30846,6	136346,0	104092,6	39299,3	1705,3	50706,3			
100	55	42803,3	36450,0	161098,2	122990,5	41375,8	1794,7	53396,3			
105	57	50133,4	42692,9	188674,1	144044,3	43452,3	1884,1	56086,3			
110	60	58254,9	49609,8	219225,9	167370,2	45528,8	1973,5	58776,3			
115	62	67208,2	57235,3	252905,9	193084,5	47605,3	2062,9	61466,3			
120	64	77033,9	65603,9	289866,2	221303,5	49681,8	2152,3	64156,3			
125	67	87772,4	74750,0	330259,2	252143,4	51758,3	2241,7	66846,3			

130	69	99464,3	84708,1	374237,1	285720,4	53834,8	2331,1	69536,3
135	72	112150,0	95512,8	421952,2	322150,8	55911,3	2420,5	72226,3
140	74	125870,1	107198,6	473556,6	361550,9	57987,8	2509,9	74916,3
145	76	140665,0	119799,9	529202,7	404036,9	60064,3	2599,3	77606,3
150	79	156575,2	133351,2	589042,7	449725,0	62140,8	2688,7	80296,3
155	81	173641,4	147887,1	653228,9	498731,5	64217,3	2778,1	82986,3
160	84	191903,8	163442,1	721913,4	551172,7	66293,8	2867,5	85676,3
165	86	211403,2	180050,6	795248,6	607164,8	68370,3	2956,9	88366,3
170	88	232179,8	197747,1	873386,7	666824,0	70446,8	3046,3	91056,3
175	91	254274,3	216566,2	956480,0	730266,6	72523,3	3135,7	93746,3
180	93	277727,2	236542,4	1044680,6	797608,9	74599,8	3225,1	96436,3
185	96	302578,9	257710,1	1138140,9	868967,1	76676,3	3314,5	99126,3
190	98	328870,0	280103,8	1237013,1	944457,4	78752,8	3403,9	101816,3
195	100	356640,9	303758,1	1341449,5	1024196,1	80829,3	3493,3	104506,3
200	103	385932,2	328707,5	1451602,2	1108299,5	82905,8	3582,7	107196,3
205	105	416784,3	354986,4	1567623,6	1196883,8	84982,3	3672,1	109886,3
210	107	449237,8	382629,3	1689665,9	1290065,2	87058,8	3761,5	112576,3
215	110	483333,1	411670,8	1817881,4	1387960,0	89135,3	3850,9	115266,3
220	112	519110,8	442145,4	1952422,2	1490684,5	91211,8	3940,3	117956,3
225	115	556611,3	474087,5	2093440,7	1598354,9	93288,3	4029,7	120646,3
230	117	595875,2	507531,6	2241089,1	1711087,4	95364,8	4119,1	123336,3
235	119	636942,9	542512,3	2395519,7	1828998,3	97441,3	4208,5	126026,3
240	122	679855,0	579064,1	2556884,6	1952203,9	99517,8	4297,9	128716,3
245	124	724651,9	617221,4	2725336,2	2080820,4	101594,3	4387,3	131406,3
250	127	771374,1	657018,7	2901026,7	2214964,0	103670,8	4476,7	134096,3
255	129	820062,3	698490,6	3084108,4	2354751,0	105747,3	4566,1	136786,3
260	131	870756,7	741671,6	3274733,4	2500297,7	107823,8	4655,5	139476,3
265	134	923498,1	786596,1	3473054,1	2651720,3	109900,3	4744,9	142166,3
270	136	978326,7	833298,6	3679222,7	2809135,0	111976,8	4834,3	144856,3
275	138	1035283,2	881813,7	3893391,5	2972658,1	114053,3	4923,7	147546,3
280	141	1094408,1	932175,9	4115712,6	3142405,9	116129,8	5013,1	150236,3
285	143	1155741,8	984419,6	4346338,4	3318494,6	118206,3	5102,5	152926,3
290	146	1219324,9	1038579,3	4585421,1	3501040,4	120282,8	5191,9	155616,3
295	148	1285197,8	1094689,6	4833113,0	3690159,6	122359,3	5281,3	158306,3
300	150	1353401,1	1152785,0	5089566,2	3885968,5	124435,8	5370,7	160996,3
305	153	1423975,2	1212899,9	5354933,1	4088583,3	126512,3	5460,1	163686,3
310	155	1496960,7	1275068,8	5629365,9	4298120,2	128588,8	5549,5	166376,3
315	158	1572398,0	1339326,3	5913016,9	4514695,5	130665,3	5638,9	169066,3
320	160	1650327,7	1405706,9	6206038,2	4738425,5	132741,8	5728,3	171756,3
325	162	1730790,2	1474245,0	6508582,2	4969426,4	134818,3	5817,7	174446,3
330	165	1813826,1	1544975,1	6820801,1	5207814,4	136894,8	5907,1	177136,3
335	167	1899475,8	1617931,8	7142847,2	5453705,8	138971,3	5996,5	179826,3
340	170	1987779,9	1693149,6	7474872,6	5707216,9	141047,8	6085,9	182516,3
345	172	2078778,8	1770662,9	7817029,7	5968463,9	143124,3	6175,3	185206,3
350	174	2172513,0	1850506,2	8169470,7	6237563,0	145200,8	6264,7	187896,3
355	177	2269023,2	1932714,1	8532347,9	6514630,5	147277,3	6354,1	190586,3
360	179	2368349,6	2017321,1	8905813,4	6799782,7	149353,8	6443,5	193276,3
365	181	2470533,0	2104361,6	9290019,6	7093135,8	151430,3	6532,9	195966,3
370	184	2575613,6	2193870,1	9685118,7	7394806,0	153506,8	6622,3	198656,3
375	186	2683632,1	2285881,2	10091263,0	7704909,6	155583,3	6711,7	201346,3
380	189	2794629,0	2380429,4	10508604,6	8023562,9	157659,8	6801,1	204036,3
385	191	2908644,7	2477549,1	10937295,9	8350882,1	159736,3	6890,5	206726,3
390	193	3025719,8	2577274,8	11377489,1	8686983,4	161812,8	6979,9	209416,3
395	196	3145894,7	2679641,1	11829336,5	9031983,1	163889,3	7069,3	212106,3
400	198	3269210,0	2784682,5	12292990,2	9385997,5	165965,8	7158,7	214796,3

405	201	2205706.1	2002422.4	127696026	0740142.0	160042.2	7040.1	2174962
405	201 203	3395706,1	2892433,4	12768602,6 13256325,9	9749142,8	168042,3 170118,8	7248,1	217486,3
410 415	205	3525423,6	3002928,3		10121535,2	,	7337,5	220176,3
420	203	3658402,9 3794684,6	3116201,8 3232288,4	13756312,4 14268714,2	10503291,0 10894526,5	172195,3 174271,8	7426,9 7516,3	222866,3 225556,3
425	210	3934309,1	3351222,5	14793683,7	11295357,9	174271,8	7605,7	
430	213	4077317,0	3473038,6	15331373,1	11705901,4	178424,8	7695,1	228246,3 230936,3
435	215	4223748,7	3597771,3	15881934,7	12126273,3	180501,3	7784,5	233626,3
440	217	· ·			12556589,9		7873,9	
445	220	4373644,8 4527045,7	3725455,1 3856124,4	16445520,6 17022283,2	12996967,4	182577,8 184654,3	7963,3	236316,3 239006,3
450	222	4683991,9	3989813,7	17612374,7	13447522,0	186730,8	8052,7	241696,3
455	224	4844524,1	4126557,6	18215947,4	13908370,0	188807,3	8142,1	244386,3
460	227	5008682,5	4266390,6	18833153,4	14379627,7	190883,8	8231,5	247076,3
465	229	5176507,9	4409347,1	19464145,1	14861411,3	192960,3	8320,9	249766,3
470	232	5348040,5	4555461,6	20109074,7	15353837,0	195036,8	8410,3	252456,3
475	234	5523321,0	4704768,7	20768094,5	15857021,1	197113,3	8499,7	255146,3
480	236	5702389,9	4857302,9	21441356,6	16371079,9	199189,8	8589,1	257836,3
485	239	5885287,6	5013098,6	22129013,4	16896129,6	201266,3	8678,5	260526,3
490	241	6072054,7	5172190,3	22831217,1	17432286,4	203342,8	8767,9	263216,3
495	244	6262731,6	5334612,6	23548120,0	17979666,6	205419,3	8857,3	265906,3
500	246	6457358,9	5500400,0	24279874,2	18538386,5	207495,8	8946,7	268596,3
505	248	6655977,0	5669586,9	25026632,1	19108562,3	209572,3	9036,1	271286,3
510	251	6858626,5	5842207,8	25788545,9	19690310,2	211648,8	9125,5	273976,3
515	253	7065347,8	6018297,3	26565767,9	20283746,5	213725,3	9214,9	276666,3
520	256	7276181,5	6197889,9	27358450,2	20888987,5	215801,8	9304,3	279356,3
525	258	7491168,0	6381020,0	28166745,2	21506149,4	217878,3	9393,7	282046,3
530	260	7710347,9	6567722,1	28990805,1	22135348,4	219954,8	9483,1	284736,3
535	263	7933761,6	6758030,8	29830782,2	22776700,8	222031,3	9572,5	287426,3
540	265	8161449,7	6951980,6	30686828,6	23430322,9	224107,8	9661,9	290116,3
		,	,	I боните:		,	,	,
50	31	2322,6	2042,5	9098,4	6971,0	16633,9	728,9	21522,0
55	33	3269,9	2873,7	12791,4	9800,4	18308,4	801,2	23705,5
60	35	4443,4	3903,1	17363,3	13303,2	19982,9	873,6	25889,0
65	38	5867,2	5151,7	22907,2	17550,6	21657,4	945,9	28072,5
70	40	7565,2	6640,5	29516,0	22614,0	23331,9	1018,3	30256,0
75	43	9561,5	8390,5	37282,8	28564,5	25006,4	1090,6	32439,5
80	45	11880,0	10422,7	46300,5	35473,4	26680,9	1163,0	34623,0
85	47	14544,7	12758,0	56662,2	43411,9	28355,4	1235,3	36806,5
90	50	17579,8	15417,6	68460,8	52451,4	30029,9	1307,7	38990,0
95	52	21009,0	18422,4	81789,4	62663,0	31704,4	1380,0	41173,5
100	55	24856,6	21793,4	96740,9	74118,0	33378,9	1452,4	43357,0
105	57	29146,3	25551,6	113408,4	86887,6	35053,4	1524,7	45540,5
110	59	33902,3	29718,0	131884,8	101043,2	36727,9	1597,1	47724,0
115	62	39148,6	34313,5	152263,2	116655,9	38402,4	1669,4	49907,5
120	64	44909,1	39359,3	174636,5	133797,0	40076,9	1741,8	52091,0
125	67	51207,9	44876,3	199097,8	152537,7	41751,4	1814,1	54274,5
130	69	58068,9	50885,5	225740,0	172949,4	43425,9	1886,5	56458,0
135	71	65516,2	57407,9	254656,2	195103,2	45100,4	1958,8	58641,5
140	74	73573,7	64464,5	285939,3	219070,4	46774,9	2031,2	60825,0
145	76	82265,5	72076,3	319682,4	244922,2	48449,4	2103,5	63008,5
150	79	91615,5	80264,2	355978,4	272730,0	50123,9	2175,9	65192,0
155	81	101647,8	89049,4	394920,4	302564,9	51798,4	2248,2	67375,5
160 165	83 86	112386,3	98452,8	436601,3	334498,2	53472,9	2320,6	69559,0
170	88	123855,1	108495,4 119198,2	481114,2	368601,1 404945,0	55147,4 56821.0	2392,9	71742,5
	00	136078,1	1 117178,4	528552,0	4U4743,U	56821,9	2465,3	73926,0
175	90	149079,4	130582,2	579007,8	443601,0	58496,4	2537,6	76109,5

В результате выполненной работы был проведен расчет нормативы стоимостной получены оценки островных боров сосновых древостоев Костанайской области. Используя таблицы хода роста, по исследуемый сосновый которым древостой рассматривался, определялся 10-летним приростом сосновых запаса древесины древостоев для классов бонитета приведенных В статье, который рассчитывался разности ПО

предыдущего и последующего 10летнего прироста. Была определена стоимостная оценка для количества продуцируемого кислорода, прироста древесной массы, учтенных видов услуг, древесной массы и учтённого комплекса услуг. Используя нормативы стоимостной оценки, можно будет определить органического количество кислорода и углерода, количество депонируемого углерода И продуцируемого кислорода.

Обсуждение полученных данных и заключение

По данным таблиц хода роста, которые взяты для рассмотрения исследуемого древостоя, определяется 10-летний прирост древесины сосновых запаса древостоев островных боров, для указанных классов бонитета, который рассчитали по разности предыдущего последующего И периодов изучения. В последующем рассчитать ряд онжом таких компонентов, количество как органического углерода, количество органического кислорода, количество депонированного углерода, количество продуцируемого кислорода и т.д. Что является основными данными ДЛЯ составления нормативов продуктивности биоэкологической древостоев рассчитать И стоимостную оценку лесных ресурсов, как одного из основных компонентов жизнедеятельности человека.

Разработанные, в результате НИР, нормативы стоимостной оценки биоэкологического потенциала лесных насаждений имеют ряд преимуществ перед,

используемыми в производстве, в большинстве случаев, определения стоимости лесных насаждений по сводным показателям лесного фонда на текущий момент или использования, В расчетах кадастровой стоимости лесов различного назначения, формул с коэффициентов применением дисконтирования, значительно усложняющего процесс расчетов экологического потенциала комплекса экосистемных услуг, создаваемых лесными насаждениями.

Полученные данные являются лесооценочными нормативами, использование которых производстве И на практике облегчит работу определении В стоимости лесных насаждений на любой площади, различными таксационными показателями. Например, на их основе можно будет разработать таблицы удельных оценок леса в расчете на один кубометр стволовой древесины и на один ствол в составе древостоя. необходимостью фактического объема древесины или нескольких стволов работники лесного хозяйства сталкиваются повседневно, в частности, при выявлении ущерба, наносимого

лесными пожарами, вредными насекомыми и болезнями леса, другими чрезвычайными ситуациями.

Список использованной литературы

- 1. Лебедев Ю. В. Методология, принципы и практика оценки лесных экосистем // Лесной журнал. 2015. № 1. С. 9-20.
- 2. Кулакова Е. Н., Чернодубов А. И., Манаенков А. С. Экологоэкономическая оценка искусственных лесных насаждений предгорий Карачаево-Черкесской республики // Лесотехнический журнал. — 2016. №4. — С. 13-21
- 3. Лебедев Ю. В. Лебедева Т. А., Жарников В. Б. Методология. Принципы и практика оценки лесных экосистем // Леса России и хозяйство в них. 2011. N_2 1(38). С. 49-54.
- 4. Печаткин В.В. Методологические и прикладные вопросы экологоэкономической оценки лесного потенциала регионов России // Региональная экономика: теория и практика. – 2013. №3 (282). – С. 49-54.
- 5. Белов В. В., Лебедев Ю.В., Мазина И.Г. Принципы и практика оценки лесных земель // Аграрный вестник Урала. 2014. №8(126). С. 84-88.
- 6. Комиссаров Д.А. Об учете поглощения углекислого газа и выделении кислорода лесом // Лесное хозяйство. 1965. № 1. С. 51-54.
- 7. Ильев Л. И., Гордиенко Р. Н. Экономическая оценка лесов многоцелевого назначения. Обзорная информация. М., 1980. 33 с.
- 8. Гордиенко А. В., Сихимбаев М. Р. Особенности эколого-экономической оценки природных ресурсов в республике Казахстан // Международный студенческий научный вестник. 2017. № 3. С. 5.
- 9. Часовских В.П., Воронов М.П., Усольцев В.А., Кох Е.В. Анализ взаимосвязей между лесными ресурсами и полезными функциями леса // Экономика и управление: анализ тенденций и перспектив развития. 2016. № 31-2. С. 162-180.
- 10. Усольцев В. А. Фитомасса лесов северной Евразии: нормативы и элементы географии. Екатеринбург: УрО РАН, 2002. 759с.
- 11. Нормативы для таксации лесов Казахстана. Часть I, Книга II. Алма-Ата: Кайнар, 1987. 323 с.

References

- 1. Lebedev YU. V. Metodologiya, principy i praktika ocenki lesnyh ekosistem // Lesnoj zhurnal. 2015. № 1. p. 9-20.
- 2. Kulakova E. N., CHernodubov A. I., Manaenkov A. S. Ekologo-ekonomicheskaya ocenka iskusstvennyh lesnyh nasazhdenij predgorij Karachaevo-CHerkesskoj respubliki // Lesotekhnicheskij zhurnal. − 2016. №4. − p. 13-21

- 3. Lebedev YU. V. Lebedeva T. A., ZHarnikov V. B. Metodologiya. Principy i praktika ocenki lesnyh ekosistem // Lesa Rossii i hozyajstvo v nih. − 2011. № 1(38). − p. 49-54.
- 4. Pechatkin V.V. Metodologicheskie i prikladnye voprosy ekologo-ekonomicheskoj ocenki lesnogo potenciala regionov Rossii // Regional'naya ekonomika: teoriya i praktika. 2013. №3 (282). p. 49-54.
- 5. Belov V. V., Lebedev YU.V., Mazina I.G. Principy i praktika ocenki lesnyh zemel' // Agrarnyj vestnik Urala. 2014. №8(126). p. 84-88.
- 6. Komissarov D.A. Ob uchete pogloshcheniya uglekislogo gaza i vydelenii kisloroda lesom // Lesnoe hozyajstvo. − 1965. № 1. − p. 51-54.
- 7. II'ev L. I., Gordienko R. N. Ekonomicheskaya ocenka lesov mnogocelevogo naznacheniya. Obzornaya informaciya. M., 1980. 33 p.
- 8. Gordienko A. V., Sihimbaev M. R. Osobennosti ekologo-ekonomicheskoj ocenki prirodnyh resursov v respublike Kazahstan // Mezhdunarodnyj studencheskij nauchnyj vestnik. 2017. № 3. p. 5.
- 9. CHasovskih V.P., Voronov M.P., Usol'cev V.A., Koh E.V. Analiz vzaimosvyazej mezhdu lesnymi resursami i poleznymi funkuiyami lesa // Ekonomika i upravlenie: analiz tendencij i perspektiv razvitiya. − 2016. № 31-2. − p. 162-180.
- 10. Usol'cev V. A. Fitomassa lesov severnoj Evrazii: normativy i ele-menty geografii. Ekaterinburg: UrO RAN, 2002. 759 p.
- 11. Normativy dlya taksacii lesov Kazahstana. CHast' I, Kniga II. Alma-Ata: Kajnar, 1987. 323 p.

ҚОСТАНАЙ ОБЛЫСЫНЫҢ АРАЛДЫҚ ОРМАНДАРЫНДАҒЫ ҚАРАҒАЙ СҮРЕКДІҢДЕРІНІҢ БИОЭКОНОМИКАЛЫҚ ӨНІМДІЛІГІ НОРМАТИВТЕРІН ЕСЕПТЕУ

Шишкин А.М., аға ғылыми қызметкер Панкратов В.К., кіші ғылыми қызметкер «Қазақ орман шаруашылығы және агроорманмелиорация ғылыми-зерттеу институты» ЖШС, Щучинск қаласы, Қазақстан, Киров көшесі, 58

Түйін

Жүргізілген зерттеулер Қазақстанның қарағай алқаағаштарының биологиялық өнімділігін экономикалық бағалауды қамтитын алғашқы жұмыстардың бірі болып табылады.

Орындалған жұмыстың нәтижесінде авторлармен есептеулер жүргізілді және Қостанай облысының қарағайлы сүрекдіңдерінің аралдық қарағай ормандарын құндық бағалау нормативтері алынды. Мақалада ең үлкен жастағы әрбір кейінгі бонитет үшін орта қалыптастырушы функциялар мен экожүйелік қызметтердің құнын есептеу көрсеткіштері келтіріледі. Тиісті индекстерді пайдалана отырып, өндірілетін оттегінің, депонирленген көміртегінің және экожүйелік қызметтер кешенінің мөлшері үшін құндық баға анықталды.

Алынған деректер орман бағалау нормативтері болып табылады, оларды өндірісте және тәжірибеде пайдалану әр түрлі таксациялық көрсеткіштері бар

кез келген алаңдағы орман екпелерінің құнын анықтауда жұмысты жеңілдетеді. Олардың негізінде діңдік сүректің бір текше метріне және сүрекдіңнің құрамындағы бір діңге есептегенде орманды үлестік бағалау кестесін әзірлеуге болады.

Кілттік сөздер: кәдімгі қарағай, қарағай сұрекдіңдері, биоэкологиялық өнімділік және бағалау, оттегі, өнімділік функциясы, көміртегі, жинақтаұ функциясы, нормативтер.

CALCULATION OF BIOECONOMIC PRODUCTIVITY STANDARDS FOR PINE STANDS OF ISLAND HOGS IN KOSTANAY REGION

Shishkin A.M., senior researcher Pankratov V. K., junior researcher

Research worker of the department of forest reproduction and afforestation of Kazakh scientific research Institute of forest and agricultural afforestation, 58 Kirov Street, Shchuchinsk, Akmola region

Summary

The conducted research is one of the first works containing an economic assessment of the biological productivity of pine plantations in Kazakhstan.

As a result of the work performed, the authors carried out calculations and obtained standards for the valuation of island forests of pine stands of the Kostanay region. The article provides indicators for calculating the cost of environment-forming functions and ecosystem services for each subsequent bonitet, at the oldest age. Using the appropriate indices, a cost estimate is determined for the amount of oxygen produced, carbon deposited, and a set of ecosystem services.

The obtained data are forest valuation standards, the use of which in production and in practice will facilitate the work in determining the cost of forest plantations on any area, with various taxation indicators. Based on them, it is possible to develop tables of specific estimates of the forest per one cubic meter of stem wood and one trunk in the stand.

Keywords: common pine, pine stands, bio-ecological productivity and assessment, oxygen, producing function, coal-rod, depositing function, standards for taxation.